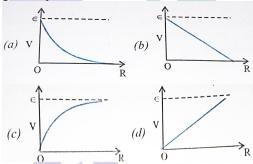
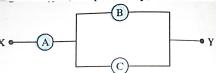

EW STANDARD ACADE

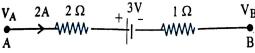

CLASS: 12TH NEET Time: $2\frac{1}{2}$ hours Date: 26-05-25

PHYSICS

1. 4. In the circuit shown, the cells A and B have negligible resistance for $V_A = 12V$, $R_1 = 500$ Ω and R = 100 Ω , the galvanometer shows no deflection. The value of V B is

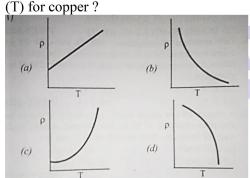


- (a) 4V
- (b) 2V
- (c) 12V
- (d) 6V
- 2. A cell having an em.fe and internal resistance is connected across a variable external resistance R. As the resistance R is increased, the plot of potential difference V across R is given by

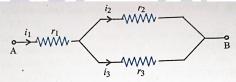


- The internal resistance of a 2.1V cell which gives a current of 0.2A through a resistance of 10Ω is
 - (a) 0.2Ω
- (b) 0.5Ω
- (c) 0.8Ω
- (d) 1.0Ω
- 4. Ten identical cells connected in series are needed to heat a wire of length one metre and radius'r' by 10°C in time 't'. How many cells will be required to heat the wire of length two metre of same radius by same temperature in time t?
 - (a) 20
- (c) 40
- (b) 30
- (d) 10
- 5. Two cities are 150 km apart. Electric power is sent from one city to another city through copper wires. The fall of potential per km is 8 volt and the average resistance per km is 0.5Ω Q. The power loss in the wire is
 - (a) 19.2 kW
- (b) 19.2 J
- (c) 12.2 kW
- (d) 19.2 W

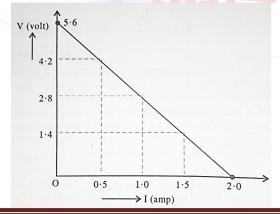
6. If A, B and C are voltmeters of resistance R. 1.5R and 3R respectively as shown in the Fig. When some potential difference is applied between X and Y, the voltmeter readings are $V_A V_B$ and v_C respectively, then

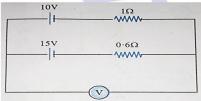


- (a) $V_A \neq V_B = V_C$
- (b) $V_A = V_B \neq V_C$
- (C) $V_A \neq V_B \neq V_C$
- $(d) V_A = V_B = V_C$
- 7. The charge flowing through a resistance R varies with time t as $Q = at - bt^2$ where a and b are positive constants. The total heat produced in R is
 - (a) $a^{3}R/2b$
- (b) $a^3 R/b$
- (c) $a^3 R/6b$
- (d) $a^3 R/3b$
- 8. 15. The potential difference (V $\{A\}$ -V {B}) between the points A and B in the given Fig is



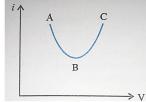
- (a) -3V
- (c) + 6V
- (d) + 9V
- 9. If a cell can supply a current I through a resistance R₁ and a current I/2 across a resistance R2then the internal resistance of the cell is
 - (a) $R_1 2R_2$
- (b) $R_2 2R_1$
- (c) $R_1 + 2R_2$
- (d) $R_2 + R_1$
- 10. A battery consists of a variable number n of identical cells (having internal resistance reach) which are connected in series. The terminals of the battery are short-circuited and the current I is measured. Which of the graph slows correct relationship between I and n?


- 11. A charged particle having drift velocity of 7.5 \times 10⁻⁴ m s⁻¹ electric field of 3 \times 10⁻¹⁰ V m⁻¹ has a mobility in m² 10 V⁻¹ s⁻¹ of
 - (a) 2.25×10^{15}
- (b) 2.5×10^6
- (c) 2.5×10^{-6}
- (d) 2.25×10^{-15}
- 12. Which of the following graph represents variation of resistivity (ρ) with temperature

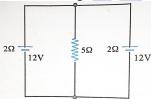

13. Three resistors having resistances r_1 , r_2 and r_3 are connected as shown in the given circuit. The ratio i_3/i_1 terms of resistances used in the circuit is: of currents in

- 14. As the temperature increase, the electrical resistance:
 - (a) decreases for both conductors and semiconductors
 - (b) increases for conductors but decreases for semiconductors
 - (c) decreases for conductors but increase for semiconductors
 - (d) increases for both conductors and semiconductors.
- 15. Four cells of identical emf E and internal resistance are connected in series to a variable resistor. The given graph Mshows variation of terminal voltage of the combination with current. The emf of each cell used is

- (a) 1.4 V
- b) 5.6 V
- (c) 2V
- (d) 1V.
- 16. Two electric bulbs rated 25 W-220 V and 100 W-220 V are connected in series to a 440 V supply. Which of the bulb will fuse?
 - (a) both
- (b) 100 W
- (c) 25 W
- (d) neither.
- 17. A Wheatstone bridge has the resistances 10 Ω , 10 Ω , 10 Ω and 30 Q in its four arms. What resistance joined in parallel to 30 Ω will bring it to the balanced condition?
 - (a) 2Ω
- $(b)5\Omega$
- (c) 10Ω
- (d) 15Ω
- 18. 2. A 10V battery with internal resistance 12 and 15V battery with internal resistance 062 are connected in parallel to a voltmeter as shown in the Fig. The reading in voltmeter will be close to



- (a) 12.5 V
- (b) 24.5 V
- (c) 13.1 V
- (d) 11.9 V.
- 19. The temperature dependence of resistances of Cu and undoped Si in the temperature range 300-400 K. is best described by
 - (a) Linear increase for Cu, linear increase for
 - (b) Linear increase for Cu, exponential increase for Si.
 - (c) Linear increase for Cu, exponential decrease for Si.
 - (d) Linear decrease for Cu, linear decrease for Si.
- 20. A wire is being drawn to make it thinner such that the length of the wire *l* increases and radius r decreases. Its resistane R will finally be proportional to
 - (a) $\frac{1}{-}$


- 21. Charge passing through a conductor of crosssection area, A = 0. $3m^2$ is given by $q = 3t^2 +$ 5t + 2 in coulomb, where t is in second. What is the value of drift velocity at t = 2s [Given n $= 2 \times 10^{25} / \text{ m}^3]$ (a) 0. 77 × 10⁻⁵ m/s (b) 1.77 × 10⁻⁵ m/s

- (c) $2.0.8 \times 10^5 \text{ m/s}$ (d) $0.57 \times 10^5 \text{ m/s}$
- 22. When a current is passed in a conductor, 3 °C rise in emperature is observed. If the strength of the current is made thrice, then rise in temperature will approximately be
 - (a) 36 °C
- (b) 27 °C
- (c) 18 °C
- (d) 9°C

23. The current-voltage graph for a device is shown in figure, The resistance is negative in region

- (a) AB
- (b) BC
- (c) ABC
- (d) none of these.
- 24. In the arrangement shown in figure, the current through 5 Ω resistor is

- (a) 2 A
- (b) zero
- (c) 12/7A
- (d) 1A.
- 25. Then rows each containing m cells in series are joined in 25 parallel. Maximum current is taken from this combination across an external resistance of 3 Ω . If the total number of cells used are 24 and internal resistance of each cell is 0.5Ω , then
 - (a) m = 8 n = 3
- (b) m = 6 n = 4
- (c) m = 12 n = 2
- (d) m = 2, n = 12

CHEMISTRY

26. The rate law for the reaction:

 $RCI + NaOH \rightarrow ROH + NaCl$ is given by Rate = K[RCI] The rate of this reaction

- (a) Is doubled by doubling the concentration of NaOH
- (b) Is halved by reducing the concentration of RCl by one half
- (c) Is decreased by increasing the temperature of the reaction
- (d) In unaffected by change in temperature
- 27. For a hypothetical reaction,

$$A + 2B \rightarrow 3C + D$$

d[C]/dt is equal to

- (a) $\frac{3d[A]}{}$
- 3d[B]

- 28. A drop of a solution (volume= 0.05mL) contains 6×10^{-7} mol of H⁺. If the rate of disappearance of H $^+$ is 6.0×10^5 mol/L×s, how long will it take for H + to disappear from the drop?
 - (a) 8×10^{-8} s
- (b) 2×10^{-8} s
- (c) 6×10^{-6} s
- (d) 2×10^{-2} s
- 29. For the reaction, $2NO_2 + F_2 \rightarrow 2NO_2F$ following mechanism has been provided,

 $NO_2 + F_2 \xrightarrow{Slow} NO_2F + F$ $NO_2F \xrightarrow{Fast} NO_2F$

$$NO_2F \xrightarrow{Fast} NO_2F$$

Thus, rate expression of the above reaction can be written as:

- (a) $r = k [NO_2]^2 [F_2]$
- (b) $r = k[NO_2][F_2]$
- (c) $r = k[NO_2]$
- (d) $r = k[F_2]$
- 30. The ionic reactions are usually very fast because:
 - (a) It does not involve bond breaking
 - (b) The energy of activation between charged ions is greater than that between neutral molecules
 - (c) Collision frequency is very low
 - (d) The reactions are highly exothermic
- 31. For the reaction, $N_2O_5 \rightarrow 2NO_2 + \frac{1}{2}O_2$ Given, $-\frac{d[N_2o_5]}{DT} = k_1[N_2O_5]$

Given,
$$-\frac{d[N_2O_5]}{DT} = k_1[N_2O_5]$$

 $\frac{d[NO_2]}{dt} = k_2[N_2O_5]$
and $\frac{d[O_2]}{dt} = k_3[N_2O_5]$

The relation in between K_1 , K_2 and K_3 is

- (a) $2k_1 = k_2 = 4k_3$ (b) $k_1 = k_2 = k_3$ (c) $2k_1 = 4k_2 = k_3$ (d) None of these

- 32. Observe the following reaction, $2A + B \rightarrow C$ The rate of formation of C is 2.2×10^{-3} mol $L^{-1} \min^{-1}$

What is the value of $-\frac{d[A]}{dt}$ (mol L $^{-1}$ min $^{-1}$)? (a) 2.2×10^{-3} (b) 1.1×10^{-3} (c) 4.4×10^{-3} (d) 5.5×10^{-3}

- 33. In the synthesis of ammonia by Haber process, if 60 moles of ammonia is obtained in one hour, then the rate of disappearance of nitrogen is
 - (a) 30 mol/min
- (b) 6 mol/min
- (c) 0.5 mol/min
- (d) 60 mol/min
- 34. In the reaction, $2A + B \rightarrow A_2B$ if the concentration of A is doubled and of B is halved, then the rate of the reaction will
 - (a) Increase by two times
 - (b) Decrease by two times
 - (c) Increase by four times
 - (d) Remain the same
- 35. For the reaction, $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ The experimental data suggest rate = $k[H_2] [Br_2]^{1/2}$ the molecularity and order of the reaction are respectively
 - (a) 1 and 1/2
- (b) 1 and 1
- (c) 3/2 and 3/2
- (d) 2 and 3/2
- 36. The reaction, $CH_3COOC_2H_5 + NaOH \rightarrow$ $CH_3COONa + C_2H_5OH$ is
 - (a) Biomolecular reaction
 - (b) II order reaction

- (c) Both (1) and (2)
- (d) None of these
- 37. For the elementary step,

 $(CH_3)_3$, $CBr(aq) \rightarrow (CH_3)_3C^+(aq) + Br^-(aq)$ the molecularity is

- (a) Zero
- (b) 1
- (c) 2
- (4) Cannot ascertained
- 38. The inversion of cane sugar into glucose and fructose is
 - (a) I order
- (b) 11 order
- (c) III order
- (d) Zero order
- 39. Consider the following two reactions,

A \rightarrow product, $-\frac{d[A]}{dt} = k_1 [A]^0$ B \rightarrow product, $-\frac{d[A]}{dt} = k_2 [B]$

 k_1 and k_2 are expressed in term of molarity (mol L^{-1}) and time (s^{-1}) as

- (a) s^{-1} , $M s^{-1}$ (c) s^{-1} , $M^{-1} s^{-1}$
- (b) $Ms^{-1} M s^{-1}$
- (d) $M s^{-1}, s^{-1}$
- 40. The half-life period for a zero order reaction is equal to (a) $2k/[A]^0$
- (b) $[A]_0/2k$
- (c) 0.693/k
- (d) $0.693/ k [A]_0$
- 41. The unit and value of rate constant and that of rate of reaction are same for
 - (a) Zero order
- (b) First order
- (c) Second order
- (d) Third order
- 42. What is the formula to find value of $t_{1/2}$ for a zero order reaction?
 - (a) $k/[R]_0$
- (b) $2k/[R]_0$
- (c) $[R]_0/2k$
- (4) 0.693/k
- 43. The half-life period for zero order reaction $A \rightarrow \text{product}$, is 100 min. How long will it take in 80% completion?
 - (a) 80 min
- (b) 160 min
- (c) 100 min
- (d) 200 min
- 44. For zero order reaction, the integrated rate equation is
 - (a) $kt = [A]/[A]_0$
- (b) $kt = [A] [A]_0$
- (c) $[A] = -kt + [A]_0$
- (d) $[A] = kt [A]_0$
- 45. At 373 K, a gaseous reaction $A \rightarrow 2B + C$ is found to be of first order. Starting with pure A, the total pressure at the end of 10 min was 176 mm and after a long time when A was completely dissociated, it was 270 mm. The pressure of A at the end of 10 min was
 - (a) 94 mm
- (b) 47 mm
- (c) 43 mm
- (d) 90 mm
- 46. The hydrolysis of ethyl acetate,

 $CH_3COOC_2H_5 + H_2O \xrightarrow{H+} CH_3COOH +$ C₂H₅OH is

- (a) First order
- (b) Second order
- (c) Third order
- (d) Zero order
- 47. The rate constant of a first order reaction is $4 \times 10^{-3} \text{ sec}^{-1}$ At a reactant concentration of 0.02 M, the rate of reaction would be

- (a) 8×10^{-5} M sec⁻¹ (b) 4×10^{-3} M sec⁻¹ (c) 2×10^{-1} M sec⁻¹ (d) 4×10^{-1} M sec⁻¹

- 48. A first order reaction has a half-life period of 69.3 sec. At 0.10 mol litre⁻¹ reactant concentration, rate will be
 - (a) 10^{-4} M sec⁻¹
- (b) $10^{-3} \,\mathrm{M \, sec^{-1}}$
- (c) $10^{-1} \,\mathrm{M \, sec^{-1}}$
- (d) 6.93×10^{-1} M sec⁻¹
- 49. In a first order reaction, the concentration of the reactant is decreased from 1.0 M to 0.25 M in 20 minutes. The rate constant of the reaction would be
 - (a) 10min⁻¹
- (b) 6.931min⁻¹
- (c) 0.6931min^{-1}
- $(4) 0.06931 \text{ min}^{-1}$
- 50. In a first order reaction the concentration of reactant decreases from 800 mol/dm⁶ to 50 mol/dm^6 in 2×10^4 s. The rate constant fo reaction in S⁻¹ is
 - (a) 2×10^4
- (b) 3.45×10^{-5}
- (c) 1.386×10^{-4} (d) 2×10^{-4}

BIOLOGY

- 51. ABO blood group system is due to
 - (a) Multifactor inheritance
 - (b) Incomplete dominance
 - (c) Multiple allelism
 - (d) Epistasis
- 52. Mendel's laws apply only when
 - (a) Characters are linked
 - (b) Parents are pure breeding
 - (c) F, monohybrid ratio shows two types of individuals
 - (d) First pair of contrasting characters is dependent upon other pairs
- 53. Test cross is a cross between
 - (a) Hybrid x Dominant parent
 - (b) Hybrid x Recessive parent
 - (c) Hybrid x Hybrid
 - (d) All of the above
- 54. Percentage of heterozygous individuals obtained from selfing of Rr individuals is
 - (a) 100%
- (b) 75%
- (c) 50%
- (d) 25%
- 55. In Mirabilis jalapa when red flowered plants crossed with white flowered plant, the F, progeny was
 - (a) Red
- (b) White
- (c) Pink
- (d) Variegated
- 56. A cross between black flowered plant and white flowered plant yielded grey flowered plants. This phenomenon is called
 - (a) Co-dominance
 - (b) Pseudo-dominance
 - (c) Incomplete dominance

- (d) Epistasis
- 57. Gametes of AaBb individual can be
 - (a) Aa, Bb
- (b) AB, ab
- (c) AB, ab, aB
- (d) AB, Ab, aB, ab
- 58. A child has blood group O. If the father has blood group A and mother has blood group B. Then the possible genotype of father and mother would be

 - (a) I^A i and I^B I^B respectively (b) I^AI^A and I^B i respectively (c) I^A i and I^B i respectively

 - (d) I^AI^A and I^B i respectively
- 59. Which of the following is the example of pleiotropy?
 - (a) Sickle cell anaemia
 - (b) Phenylketonuria
 - (c) Starch synthesis in pea seeds
 - (d) All of the above
- 60. A pink flower plant when self-crossed produces plants with red, pink, and white flowers in the ratio of 1:2:1 in F1 generation.

This example shows the phenomenon of

- (a) Co-dominance
- (b) Multiple allelism
- (c) Incomplete dominance
- (d) Independent assortment
- 61. Distance between the genes a, b, c and d in map units is

$$a - d = 3.5$$
, $b - c = 1$, $a - b = 6$, $c - d = 1.5$ and $a - c = 5$

Find out the sequence of the genes.

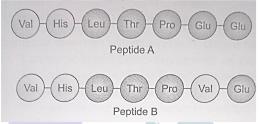
- (a) adcb
- (b) acdb
- (c) abcd
- (d) acbd
- 62. Who used the frequency of recombination between gene pairs on the same chromosome as a measure of the distance between genes?
 - (a) Sutton and Boveri (b) T.H Morgan
 - (c) Sturtevant
- (d) Mendel
- 63. The genes, which are very tightly linked on chromosome show:
 - (a) High recombination
 - (b) Very low or no recombination
 - (c) Higher crossing over frequency
 - (d) Very few parental types in progeny
- 64. In birds, the females are
 - (a) ZZ
- (b) ZW
- (c) ZO
- (d) WW
- 65. Read the following statements and choose the correct option.

- I. In fruit fly, both male and female have same number of chromosomes II In birds, the total number of chromosomes is same in both males and females.
- III. In grasshopper, all eggs bear an additional X-chromosome besides the other chromosomes (autosomes)
- IV. In both XO and XY type, males produce two different types of gametes, either with or without X-chromosome or some gametes with X-chromosome and some with Y-chromosome

Correct statement(s) is/are

- (a) Only I, II, and IV
- (b) Only II. III, and IV
- (c) All the above
- (d) Only 1, III, and IV
- 66. In honeybee, an unfertilised egg develops
 - (a) Worker
- (b) Queen
- (c) Drone
- (d) Either (1) or (2)
- 67. Match the following columns and choose the correct option.

Column I (Type of sex determination) Column II(organism)


- 1. XO type
- a Honeybee
- 2. XY type
- b. Grasshopper
- 3. ZW type
- c. Drosophila
- 4. Haplodiploid type d. Columba
- (a) 1-b,2-d, 3-c 4-a
- (b) 1-b,2-c,3-d,4-a
- (c) 1-b,2-a, 3-d, 4-c
- (d) 1-d,2-c, 3-b, 4-a
- 68. Match the following columns and choose the correct option.

	Column I		Column II
1.	Male	a.	\Diamond
2.	Female	b.	
3.	Sex unspecified	c.	5
4.	Five unaffected offspring	d.	
5.	Five affected offspring		

- (a) 1-d, 2-b, 3-a, 5-c
- (b) 1-d,2-b,3-a,4-c
- (c) 1-b,2-d,3-a,4-c
- (d) 1-a, 2-d, 3-b, 5-c
- 69. A normal woman, whose father had haemophilia, married normal man. What

is the chance of occurrence of haemophilia in their children?

- (a) 25% children will be haemophilic
- (b) 50% children will be haemophilic
- (c) 75% children will be haemophilic
- (d) None haemophilic but 75% will be carrier
- 70. What is the probability that a haemophilic man (XY) and a normal homozygous woman (XX) produce a haemophilic daughter?
 - (a) 100%
- (b) 75%
- (c) 50%
- (d) 0%
- 71. Given below are two peptides: A and B

Identify the correct statements:

- (I) The peptide A represents sex-linked recessive trait known as sickle cell anaemia.
- (II) Out of three possible genotypes, only homozygous recessive individual shows diseased phenotype.
- (III) The substitution of glutamic acid by valine occurs at B-chain of globin protein due to change in gene from CTC to CUC.
- (IV) Due to mutation, haemoglobin molecule undergoes polymerization under low oxygen tension causing change in shape from biconcave to elongated sickle like structure.
- (a) (II) and (IV)
- (b) (I) and (III)
- (c) (I). (II) and (III)
- (d) (II), (III) and (IV)
- 72. Which of the following is autosomal dominant trait?
 - (a) Myotonic dystrophy
 - (b) Cystic fibrosis
 - (c) Sickle-cell anaemia
 - (d) Phenylketonuria
- 73. Turner's syndrome is due to
 - (a) Monosomic chromosomes
 - (b) Nullisomic chromosomes
 - (c) Trisomic chromosomes
 - (d) Tetrasomic chromosomes

- 74. A child is born with extra chromosome in each of its cells
 - This condition is usually a result of
 - (a) Segregation
- (b) Hybridization
- (c) Non-disjunction (d) Crossing over
- 75. Assertion: Sickle-cell anaemia is controlled by a single pair of allele, Hb and Hb
 - Reason: It can be transmitted from parents to the offspring when both the partners are carrier for the gene (or homozygous).
 - (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
 - (b) If both assertion and reason are true, but reason is not the correct explanation of the assertion.
 - (c) If assertion is true, but reason is false.
 - (d) If both assertion and reason are false

